
Stacks

What is a Stack?

• A stack is a simple data structure used for storing
data (similar to Linked Lists).

• In a stack, the order in which the data arrives is
important.

• A pile of plates in a cafeteria is a good example
of a stack.
– The plates are added to the stack as they are cleaned

and they are placed on the top. When a plate, is
required it is taken from the top of the stack. The first
plate placed on the stack is the last one to be used.

Definition

• A stack is an ordered list in which insertion
and deletion are done at one end, called top.
The last element inserted is the first one to be
deleted. Hence, it is called the Last in First out
(LIFO) or First in Last out (FILO) list.

• Special names are given to the two changes that
can be made to a stack.

• When an element is inserted in a stack, the
concept is called push, and when an element is
removed from the stack, the concept is called
pop.

• Trying to pop out an empty stack is called
underflow and trying to push an element in a full
stack is called overflow.

• Generally, we treat them as exceptions. As an
example, consider the snapshots of the stack.

How Stacks are used

• Consider a working day in the office. Let us
assume a developer is working on a long-term
project. The manager then gives the developer a
new task which is more important. The developer
puts the long-term project aside and begins work
on the new task. The phone rings, and this is the
highest priority as it must be answered
immediately. The developer pushes the present
task into the pending tray and answers the
phone.

• When the call is complete the task that was
abandoned to answer the phone is retrieved
from the pending tray and work progresses. To
take another call, it may have to be handled in
the same manner, but eventually the new task
will be finished, and the developer can draw
the long-term project from the pending tray
and continue with that.

Stack ADT

• The following operations make a stack an ADT.
For simplicity, assume the data is an integer
type.

• Main stack operations

– Push (int data): Inserts data onto stack.

– int Pop(): Removes and returns the last inserted
element from the stack.

• Auxiliary stack operations

– int Top(): Returns the last inserted element
without removing it.

– int Size(): Returns the number of elements stored
in the stack.

– int IsEmptyStack(): Indicates whether any
elements are stored in the stack or not.

– int IsFullStack(): Indicates whether the stack is full
or not.

• Exceptions

• Attempting the execution of an operation may
sometimes cause an error condition, called an
exception. Exceptions are said to be “thrown” by
an operation that cannot be executed. In the
Stack ADT, operations pop and top cannot be
performed if the stack is empty. Attempting the
execution of pop (top) on an empty stack throws
an exception. Trying to push an element in a full
stack throws an exception.

Applications

• Following are some of the applications in which stacks
play an important role.

• Direct applications
– Balancing of symbols
– Infix-to-postfix conversion
– Evaluation of postfix expression
– Implementing function calls (including recursion)
– Finding of spans (finding spans in stock markets, refer to

Problems section)
– Page-visited history in a Web browser [Back Buttons]
– Undo sequence in a text editor
– Matching Tags in HTML and XML

• Indirect applications

– Auxiliary data structure for other algorithms
(Example: Tree traversal algorithms)

– Componen

Implementation

• There are many ways of implementing stack
ADT; below are the commonly used methods.

– Simple array based implementation

– Dynamic array based implementation

– Linked lists implementation

• Simple Array Implementation

• This implementation of stack ADT uses an
array. In the array, we add elements from left
to right and use a variable to keep track of the
index of the top element.

• The array storing the stack elements may
become full. A push operation will then throw
a full stack exception. Similarly, if we try
deleting an element from an empty stack it
will throw stack empty exception.

Performance & Limitations

• Performance

• Let n be the number of elements in the stack.
The complexities of stack operations with this
representation can be given as:

• Limitations

• The maximum size of the stack must first be
defined and it cannot be changed. Trying to
push a new element into a full stack causes an
implementation-specific exception.

Dynamic Array Implementation

• First, let’s consider how we implemented a
simple array based stack.

• We took one index variable top which points
to the index of the most recently inserted
element in the stack.

• To insert (or push) an element, we increment
top index and then place the new element at
that index.

• Similarly, to delete (or pop) an element we
take the element at top index and then
decrement the top index.

• We represent an empty queue with top value
equal to –1. The issue that still needs to be
resolved is what we do when all the slots in
the fixed size array stack are occupied?

• First try: What if we increment the size of the
array by 1 every time the stack is full?

– Push(); increase size of S[] by 1

– Pop(): decrease size of S[] by 1

• Problems with this approach?

• This way of incrementing the array size is too
expensive. Let us see the reason for this. For
example, at n = 1, to push an element create a
new array of size 2 and copy all the old array
elements to the new array, and at the end add
the new element. At n = 2, to push an element
create a new array of size 3 and copy all the old
array elements to the new array, and at the end
add the new element.

• Similarly, at n = n – 1, if we want to push an
element create a new array of size n and copy
all the old array elements to the new array
and at the end add the new element.

• After n push operations the total time T(n)
(number of copy operations) is proportional to
1 + 2 + ... + n ≈ O(n2).

Alternative Approach: Repeated
Doubling

• Let us improve the complexity by using the
array doubling technique. If the array is full,
create a new array of twice the size, and copy
the items. With this approach, pushing n items
takes time proportional to n (not n2).

• For simplicity, let us assume that initially we
started with n = 1 and moved up to n = 32.
That means, we do the doubling at 1,2,4,8,16.
The other way of analyzing the same approach
is: at n = 1, if we want to add (push) an
element, double the current size of the array
and copy all the elements of the old array to
the new array.

• At n = 1, we do 1 copy operation, at n = 2, we do 2 copy
operations, and at n = 4, we do 4 copy operations and
so on.

• By the time we reach n = 32, the total number of copy
operations is 1+2 + 4 + 8+16 = 31 which is
approximately equal to 2n value (32).

• If we observe carefully, we are doing the doubling
operation logn times.

• Now, let us generalize the discussion.
• For n push operations we double the array size logn

times.
• That means, we will have logn terms in the expression

below.
• The total time T(n) of a series of n push operations is

proportional to

• T(n) is O(n) and the amortized time of a push
operation is O(1) .

• Performance

• Let n be the number of elements in the stack.
The complexities for operations with this
representation can be given as:

• Note: Too many doublings may cause memory
overflow exception.

• The other way of implementing stacks is by
using Linked lists. Push operation is
implemented by inserting element at the
beginning of the list. Pop operation is
implemented by deleting the node from the
beginning (the header/top node).

• Performance

• Let n be the number of elements in the stack.
The complexities for operations with this
representation can be given as:

Comparison of Implementations
• Comparing Incremental Strategy and Doubling Strategy
• We compare the incremental strategy and doubling strategy by

analyzing the total time T(n) needed to perform a series of n
push operations. We start with an empty stack represented by an
array of size 1.

• We call amortized time of a push operation is the average time
taken by a push over the series of operations, that is, T(n)/n.

• Incremental Strategy
• The amortized time (average time per operation) of a push

operation is O(n) [O(n2)/n].
• Doubling Strategy
• In this method, the amortized time of a push operation is O(1)

[O(n)/n].

• Comparing Array Implementation and Linked
List Implementation

• Array Implementation
– Operations take constant time.

– Expensive doubling operation every once in a while.

– Any sequence of n operations (starting from empty
stack) – “amortized” bound takes time proportional to
n.

• Linked List Implementation
– Grows and shrinks gracefully.

– Every operation takes constant time O(1).

– Every operation uses extra space and time to deal
with references.

Queues

What is a Queue?

• A queue is a data structure used for storing
data.

• In queue, the order in which data arrives is
important.

• A queue is a line of people or things waiting to
be served in sequential order starting at the
beginning of the line or sequence.

• Definition: A queue is an ordered list in which
insertions are done at one end (rear) and
deletions are done at other end (front).

• The first element to be inserted is the first
one to be deleted.

• Hence, it is called First in First out (FIFO) or
Last in Last out (LILO) list.

• When an element is inserted in a queue, the
concept is called EnQueue,

• When an element is removed from the queue,
the concept is called DeQueue.

• DeQueueing an empty queue is called
underflow

• EnQueuing an element in a full queue is called
overflow.

• Generally, we treat them as exceptions. As an
example, consider the snapshot of the queue.

How are Queues Used?

• The concept of a queue can be explained by
observing a line at a reservation counter.

• When we enter the line we stand at the end of
the line and the person who is at the front of
the line is the one who will be served next. He
will exit the queue and be served.

• As this happens, the next person will come at the
head of the line, will exit the queue and will be
served.

• As each person at the head of the line keeps
exiting the queue, we move towards the head of
the line.

• Finally we will reach the head of the line and we
will exit the queue and be served.

• This behavior is very useful in cases where there
is a need to maintain the order of arrival.

Queue ADT

• The following operations make a queue an ADT.

• Insertions and deletions in the queue must follow
the FIFO scheme.

• For simplicity we assume the elements are
integers.

• Main Queue Operations
– EnQueue(int data): Inserts an element at the end of

the queue

– int DeQueue(): Removes and returns the element at
the front of the queue

• Auxiliary Queue

– int Front(): Returns the element at the front
without removing it

– int QueueSize(): Returns the number of elements
stored in the queue

– int IsEmptyQueueQ: Indicates whether no
elements are stored in the queue or not

Exceptions

• Similar to other ADTs, executing DeQueue on
an empty queue throws an “Empty Queue
Exception” and executing EnQueue on a full
queue throws “Full Queue Exception”.

Applications

• Following are some of the applications that use queues.
• Direct Applications

– Operating systems schedule jobs (with equal priority) in the
order of arrival (e.g., a print queue).

– Simulation of real-world queues such as lines at a ticket
counter or any other first-come first-served scenario requires
a queue.

– Multiprogramming.
– Asynchronous data transfer (file IO, pipes, sockets).
– Waiting times of customers at call center.
– Determining number of cashiers to have at a supermarket.

• Indirect Applications
– Auxiliary data structure for algorithms
– Component of other data structures

Linear Queue using Array

• Input: An element ITEM that has to be
inserted.

• Output: The ITEM is at the REAR of the queue.

• Data Structure: Q is the array representation
of queue structure; two pointers FRONT and
REAR of the queue Q are known.

Algorithm: ENQUEUE(ITEM)

• Steps:
• If(REAR == N) then

 Printf(“Queue is full”);
 Exit;
Else
if (REAR == 0) and (FRONT=0)
 FRONT =1
Endif
 REAR = REAR + 1
 Q(REAR) = ITEM
EndIf
Stop

Algorithm: DEQUEUE

• Input: A Queue with elements, FRONT and
REAR are the pointers of the queue Q.

• Output: the deleted element is stored in ITEM

• Data structures : Q is the array representation
of queue structure.

• Input: An element ITEM to be inserted into
the circular queue.

• Output: Circular queue with the ITEM at
FRONT. If the queue is not full

• Data structure: CQ be the array to represent
the circular queue. Two pointers FRONT and
REAR are known.

Circular Queue EnQueue

Circular Queue Dequeue

Linked List Enqueue

• Algorithm INSERT_DL_END(X)

• Input: X the data content of the node to be
inserted.

• Output: A Double Linked List enriched with a
node containing data as X at the end of the
list.

• Data Structure: Double Linked list Structure
whose pointer to the header node is HEADER.

Queue using Linked List

• Disadvantage of using Array:

– 1) Inadequate service of insertion representation
with array is the rigidness of its length.

– 2) length of queue may be predicated before and
it varies abruptly.

• So, to overcome these two problems, we use
linked list.

– Hence, we use Doubly Linked List which allows to
move on both sides.

• Pointers FRONT and REAR point the first node
and the last node in the list.

• Two states of the queue namely, empty or it
contains some element can be judged by
following tests.

Insertion into a queue using doubly
linked list

Front

• Queue is empty

 FRONT = REAR = HEADER

 HEADER. RLINK(next) = NULL

• Queue contains at least one element

 HEADER.RLINK(next) = NULL

• 1.ptr = HEADER
 2.While (ptr.RLINK(next) = NULL) do //Move to the
 // Last Node
 i.ptr=ptr.RLINK(next)
 3. EndWhile
 4.new= GETNODE(NODE) //Avail a new node
 5.if(new != NULL) then //if the node is available
 i. new.LLINK(prev) = ptr //Change the pointer
 ii. ptr.RLINK(next) = NEW //Change the pointer
 iii. new.RLINK(next) = NULL //Make the new node as the last node
 iv. new.Data=X(ITEM)(ELEMENT)
 6. Else
 i. print(“Unable to Allocate Memory. Insertion is not possible”)
 7. Endif
 8. Stop

Deletion of node from Queue using
Doubly Linked List

Rear

Front

Linked List Dequeue

Deque

• In Deque insertion and deletion can be made
at either end of the structure.

• Deque means Double Ended QUEue.

• DEQUE can be used both as stack and queue.
• We can represent deque by using Double Linked

List and Circular Array.
• Following four operations are possible on a

deque which consists of a list of items.
– 1. PUSHDQ(ITEM): To insert ITEM at the FRONT end

of deque
– 2.POPDQ(): To remove the FRONT item from deque.
– 3. INJECT(ITEM): To insert ITEM at the REAR END OF

DEQUE.
– 4. EJECT(): To remove the REAR ITEM from deque.

Algorithm PUSHDQ(ITEM)

• Algorithm: PUSHDQ(ITEM)

• Input: ITEM to be inserted at the FRONT

• Output: Deque with newly inserted element
ITEM if it is not full already.

• Data Structures: DQ being the circular array
representation of deque.

• Steps:
• 1. if (FRONT=1) THEN // If FRONT is at extreme left
 i. ahead = LENGTH
 2. ELSE // If FRONT is at extreme right or deque is
 // empty
 i. if(FRONT = LENGTH) Or(FRONT =0) Then
 a. ahead = 1 //FRONT is at an intermediate position
 else
 ahead= FRONT -1
 Endif
 3. If(ahead = REAR) then
 i. print “Deque is full”
 ii. Exit
 4. Else
 i. FRONT = ahead // push the ITEM
 ii.DQ[FRONT] = ITEM
 5. Stop

Deque Eject()

• Input: A dequeu with elements in it

• Output: the item is deleted from the REAR
end.

• Data Structures: DQ being the circular array
representation of deque.

Deletion in Deque(Double Ended Queue)

Implementation

• Implementing queue operations and some of
the commonly used methods are listed below.

– Simple circular array based implementation

– Dynamic circular array based implementation

– Linked list implementation

Why Circular Arrays?

• We know that, in queues, the insertions are
performed at one end(rear) and deletions are
performed at the other end(front).

• In the example shown below, it can be seen
clearly that the initial slots of the array are
getting wasted.

• So, simple array implementation for queue is not
efficient. To solve this problem we assume the
arrays as circular arrays. That means, we treat the
last element and the first array elements as
contiguous. With this representation, if there are
any free slots at the beginning, the rear pointer
can easily go to its next free slot.

• Note: The simple circular array and dynamic
circular array implementations are very similar
to stack array implementations.

• Refer to Stacks chapter for analysis of these
implementations.

Simple Circular Array Implementation

• This simple implementation of Queue ADT uses an
array. In the array, we add elements circularly and use
two variables to keep track of the start element and
end element.

• Generally, front is used to indicate the start element
and rear is used to indicate the end element in the
queue.

• The array storing the queue elements may become full.

• An EnQueue operation will then throw a full queue
exception. Similarly, if we try deleting an element from
an empty queue it will throw empty queue exception.

• Note: Initially, both front and rear points to -1 which
indicates that the queue is empty.

Linked List Implementation

• Another way of implementing queues is by
using Linked lists. EnQueue operation is
implemented by inserting an element at the
end of the list.

• DeQueue operation is implemented by
deleting an element from the beginning of the
list.

